Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis.
نویسندگان
چکیده
Platelet-decorated von Willebrand factor (VWF) strings anchored to the endothelial surface are rapidly cleaved by ADAMTS13. Individual VWF string characteristics such as number, location, and auxiliary features of the ADAMTS13 cleavage sites were explored here using imaging and computing software. By following changes in VWF string length, we demonstrated that VWF strings are cleaved multiple times, successively shortening string length in the function of time and generating fragments ranging in size from 5 to over 100 μm. These are larger than generally observed in normal plasma, indicating that further proteolysis takes place in circulation. Interestingly, in 89% of all cleavage events, VWF strings elongate precisely at the cleavage site before ADAMTS13 proteolysis. These local elongations are a general characteristic of VWF strings, independent of the presence of ADAMTS13. Furthermore, large elongations, ranging in size from 1.4 to 40 μm, occur at different sites in space and time. In conclusion, ADAMTS13-mediated proteolysis of VWF strings under flow is preceded by large elongations of the string at the cleavage site. These elongations may lead to the simultaneous exposure of many exosites, thereby facilitating ADAMTS13-mediated cleavage.
منابع مشابه
Unwinding the von Willebrand factor strings puzzle.
von Willebrand factor (VWF) is amongst others synthesized by endothelial cells and stored as ultra-large (UL) VWF multimers in Weibel-Palade bodies. Although UL-VWF is proteolysed by ADAMTS13 (a disintegrin-like and metalloprotease domain with thrombospondin type-1 motif, number 13) on secretion from endothelial cells, in vitro experiments in the absence of ADAMTS13 have demonstrated that a pro...
متن کاملP-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (ADisintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that ...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface
von Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (A Disintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms. We previously showed that...
متن کاملAssembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large Von Willebrand Factor Links Complement and Hemostasis-Thrombosis
BACKGROUND Vascular endothelial cells (ECs) express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF) multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP) is an important non-antibody-requiring host defense system. Th...
متن کاملEndothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage.
Human umbilical vein endothelial cell (HUVEC)-released ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin repeats) and HUVEC-secreted von Willebrand factor (VWF) strings were investigated under static conditions that allow the accumulation and analysis of ADAMTS-13. The latter was released constitutively from HUVECs and cleaved the secreted and cell-anchored VWF strings progressiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 42 شماره
صفحات -
تاریخ انتشار 2011